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The mechanical properties of fibre composites are strongly influenced by the debonding of 
fibres. When an embedded fibre is loaded from one end, debonding can occur at both the 
loaded end and the embedded end. Existing theories neglect the possibility of debonding from 
the embedded end and are thus limited in applications to cases with low fibre volume fraction, 
low fibre modulus or short fibre length. A new two-way debonding theory for fibre de- 
bonding, which can extend the validity of one-way debonding theory to all general cases, is 
therefore proposed. Based on the new theory, different scenarios of debonding are identi f ied.  
Comparison is made between results predicted by the new two-way theory and a one-way 
debonding theory. The relative merits and dismerits of strength-based debonding theories 
compared to fracture-based debonding theories are briefly discussed. 

1. Introduction 
Brittle materials usually fail by the unstable propaga- 
tion of cracks formed during processing, handling or 
service. Incorporation of fibres can effectively suppress 
the growth of cracks. Experimental results which show 
significant increase in the first-cracking strain (i.e. the 
strain at which a crack propagates across a whole 
section of the material in a direct tensile test) with the 
addition of fibres have been reported by Aveston e t  al. 
[1] and Hannant et al. [2]. This increase in 
first-cracking strain can be explained in terms of 
fracture mechanics. 

When a propagating crack meets a fibre, partial 
debonding at the interface will occur if the fibre/matrix 
interface is sufficiently weak. The crack tip will then 
move past the debonded fibre, which now acts as a 
bridging ligament at the wake of the crack (Fig. 1). 
Owing to the bridging force in the fibres, which tend to 
close the crack, the stress intensity factor at the crack 
tip is reduced. Hence, a composite strain larger than 
the matrix cracking strain could be applied prior to 
unstable crack propagation (i.e. to reach Klc at the 
crack tip). To be able to predict quantitatively the 
increase in first-cracking strain (or stress) due to the 
addition of fibres, the relation between fibre bridging 
stress and crack opening has to be derived. 

As discussed by Marshall et al. [3J and Majumdar 
et al. [4], the debonding of fibres at the crack wake is 
similar to the debonding of fibres pulled from a cylin- 
der of the matrix. The bridging stress versus half crack 
opening (p-u)  relation is then associated with the 
stress versus displacement (displacement of the loaded 
fibre end relative to the matrix surface) relation (Cyp-U 
relation) for a fibre pulled from the matrix through 
p = Vfcrp, where Vf is the volume fraction of fibre. 

Hence, a model for the debonding of fibres pulled from 
the matrix is required for prediction of composite 
behaviour. 

Marshall et al. [3, 5-1 have derived the rro-u rela- 
tions for continuous fibres. In their analysis, it is 
assumed that chemical bonding at the interface can be 
neglected and a single parameter x, the interfacial 
friction, is adequate for characterization of its mechan- 
ical behaviour. Modification for the case with chem- 
ical bonding can be easily achieved. In this paper, a 
new debonding theory will be developed for discontin- 
uous fibres. The behaviour of continuous fibres can be 
obtained from our theory by simply considering the 
case when fibre length approaches infinity. 

For discontinuous fibres, several debonding theor- 
ies have been developed by Greszczuk [6], Takaku 
and Arridge [7], Lawrence [8] and Gopalaratnam 
and Shah [9]. Each of these theories provide ex- 
pressions for the stress distribution in the fibre and at 
the interface. From such expressions, Cyp-U curves can 
be derived. In all the above theories the possibility of 
debonding from both the loaded end and embedded 
end of the fibre is neglected. The resulting limitations 
of these theories will be discussed in the next section. 

After reviewing existing theories and discussing 
their limitations, a new two-way fibre debonding mo- 
del will be developed. With different fibre embedded 
length, fibre/matrix modular ratio and fibre volume 
fraction, the different manners in which debonding 
can take place will be described. Differences between 
(yp-u relations predicted by the new two-way de- 
bonding theory and an existing one-way debonding 
theory will be considered. In the new two-way 
debonding theory (as in most existing one-way de- 
bonding theories), a strength-based debonding criter- 
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Figure 1 Debonded fibres bridging a crack in the composite. 

~on is used in preference to a fracture-based criterion. 
The relative merits and dismerits of these two different 
types of debonding criteria will be briefly discussed. 

2, Limitations of  ex is t ing  theor ies  
In this section, we will look at several existing strength- 
based theories for the debonding of discontinuous fibre 
in an elastic matrix. In strength-based theories, shear 
lag analysis is usually employed to obtain the shear 
stress distribution at the fibre/matrix interface. 
Debonding begins when the shear strength of the 
interface, rs, is reached. Once debonding starts, its 
continuation will be governed by the interfacial fric- 
tion ~i as well as ~s. However, the effect of ~i on 
debonding has been neglected in some of the existing 
theories. 

An important assumption of the shear lag analysis 
is that the fibre stress cyf is given by 

(dof/dz) = K(u- v) (I) 

where K is a proportionality constant, u is the axial 
displacement in the fibre at a distance z from the 
matrix crack plane and v is a displacement defined 
differently for various theories. The validity of the 
shear lag analysis will depend very much on the 
physical basis underlying the definition of v. 

In Greszczuk [6] and Takaku and Arridge [7], v 
was taken to be zero. Moreover, in both theories, the 
effect of ~ on fibre debonding was not considered 
(although the effect of ~ on the pull-out of fibre after 
complete debonding was considered in [7]). There- 
fore, the application of these two theories are limited 
to cases where the matrix deformation can be neg- 
lected (i.e. extremely small fibre volume fraction such 
as in a fibre pull-out specimen or where the fibre 
matrix modular ratio is extremely low) and where z~/~ 
is approximately zero. 

Lawrence [8] and Gopalaratnam and Shah (GS) 
[9] considered the effect of both ~ and ~s on debon- 
ding. Lawrence took v to be the virtual displacement 
of matrix at the same point of interest, if the fibre is 
replaced by matrix. This is the same definition Cox 
[10] used in his pioneering paper on shear lag analysis 
in composites. Lawrence also suggested the use of an 
expression given by Cox for the proportionality con- 
stant K in Equation 1. However, the derivation of that 
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Figure 2 Fibre/matrix interracial shear stress distribution. 
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Figure 3 The various stages of fibre debonding: (a) elastic-stage 
(no debonding), (b) debonding from one end of fibre, (c) debonding 
from both ends of fibre, and (d) complete debonding. 

expression for K is not given in either [8] or [10] and 
its physical basis is thus unclear. 

In [9], v is defined to be the far-field displacement in 
the matrix. Hence, (u - v) can be interpreted as the 
difference in displacement caused by shear stresses in a 
cylindrical volume of matrix material surrounding the 
fibre. The proportionality constant K can then be 
derived by considering the shear deformation in the 
matrix. Since this analysis is based on a clear and 
reasonable physical basis, we shall focus on the results 
of GS in the following discussions. 

The interfacial shear stress distribution derived by 
GS [9] is shown schematically in Fig. 2. The shear 
stress distribution has local maxima at the ends of the 
fibre. The relative magnitude of shear stresses at the 
two ends depends on the embedded fibre length, rela- 
tive stiffness of fibre and matrix as well as the fibre 
volume fraction. In [9], as well as in all the other 
theories mentioned above, only debonding from the 
loaded end is considered. However, for high volume 
fraction of stiff fibres, debonding can start at the 
embedded end. Moreover, after debonding starts from 
one end, the continuation of debonding at that side is 
accompanied by increasing shear stress at the other 
end and eventually, the other end will debond leaving 
an undebonded part at the middle of the fibre. A 
plausible sequence of events during debonding is 
shown in Fig. 3. 

While it is well accepted that debonding can occur 
at the loaded end of the fibre, the possibility of 
debonding from the embedded end can be most easily 
explained by considering a very long fibre loaded at 
one end (Fig. 4). For  the purposes of discussion, axial 
strain and displacement are assumed to be uniform in 
the matrix although in reality they decrease with 
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Figure 4 Illustration of the physical reason for two-way debonding 
to occur. 

distance from the fibre matrix interface. At z = 0, 
matrix axial stress (and strain) is equal to zero. As z 
increases, stress transfer by shear between fibre and 
matrix leads to continued decrease in fibre axial strain 
and increase in matrix axial strain. On continuing 
stress transfer along the interface, a point will even- 
tually be reached where the longitudinal displacement 
in the matrix is higher than that in the fibre, which is 
physically impossible (Fig. 4a). What really happens is 
shown in Fig. 4b and c. When the fibre and matrix 
reach the same axial strain, the transfer of stress from 
one to the other is essentially terminated. The rest of 
the composite is under an applied constant strain (Fig. 
4c). In a continuous fibre system, this constant strain 
will be sustained until the surface of the specimen is 
approached. In a discontinuous fibre composite with 
very little bond or anchorage at its embedded end, the 
stress at that end is zero. Hence, stress has to be 
transferred back into the fibre from the matrix. If the 
applied strain in Fig. 4c is high enough, debonding at 
the embedded end will take place. 

It should be noted that there, is negligible shear 
stress transfer between fibre and matrix when they 
reach the same axial strain only if the fibre is very long 
so the stress conditions at the two ends of the fibre can 
essentially be uncoupled and considered separately as 
in Fig. 4b and c. For shorter fibres, the interfacial 
shear stress will not decrease to zero. (Note that the 
shear stress is proportional to the difference in dis- 
placements in the fibre and matrix and even if they are 
under the same strain, there can still be relative dis- 
placement between them. Thus it is not necessary for 
shear stress to become zero when fibre and matrix 
attain the same strain.) At the point where the fibre 
and matrix attain the same axial strain, the stress 
transfer (and hence the interfacial shear stress) simply 
reaches a minimum. Towards the embedded end, the 
shear stress increases again due to stress transfer from 
the matrix back to the fibre. 

As a conclusion of the above discussions, it is 
obvious that none of the existing theories can provide 
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Figure 5 (a) Composite cylinder model employed in the analysis, 
and (b) idealized cylinder model with the matrix carrying the same 
shear strain energy. 

a complete and adequate description for the debond- 
ing of fibres in an elastic matrix. A new debonding 
theory that takes into consideration the possibility of 
debonding from both sides of the fibre is required. In the 
next section, such a two-way debonding model will be 
developed. 

3. The t w o - w a y  debonding theory 
In this section, a new debonding theory will be de- 
veloped. The distribution of fibre axial stress and 
interracial shear stress at various stages (before de- 
bonding, one-way debonding stage and two-way de- 
bonding stage) will be derived. In the text, only the 
expressions pertinent to subsequent discussions are 
given. Mathematical details can be found in 
Appendix 1. 

3,1. Formulat ion of the problem 
If fibres are uniformly distributed in the matrix, the 
fibre can be assumed to be loaded in a cylindrical 
volume of matrix as shown in Fig. 5a. If the stress 
gradient between adjacent fibres in a composite is 
small, the shear stress at the outer boundary of the 
cylindrical matrix can be taken as zero. The outer 
radius of the cylinder, R, is related to the fibre radius, 
rf by 

R 2 = r~ /~  (2) 

where Vf is the volume fraction of fibre. 
Following Budiansky etal. [-11], we assume that all 

the axial load carrying capacity of the matrix is con- 
centrated at a ring of material at a distance R* from 
the fibre centre (Fig. 5b). Between rf and R*, the matrix 
can only deform in shear. By requiring that the shear 
strain energy contained between r e and R* in this 
idealized model be the same as that contained between 
rf and R in the real situation where both axial and 
shear stresses are distributed over the matrix material, 
an approximate expression is obtained for R*/rf. 

log(R*/rf) = - [2log Vf + Vm(3 - Vf)]/(4 V2m) (3) 

where Vm( = 1 -- Vf) is the matrix volume fraction. 
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The variation of fibre stress, (jf, with distance from 
the loaded end can then be obtained from the follow- 
ing differential equation derived in detail in 
Appendix 1. 

where 

~ 2 0 " f / ~ Z 2  - -  (13/rf)2cYf = - -  (13/rf)20~(jp (4) 

132 = 2 G m E c / [ V m E m E f l o g ( R * / r f )  ] 

= Vf Ef/E~, 

Er = VfEf + VInE m 

with E m and Ef being the Young's moduli of matrix 
and fibre, Gm being the matrix shear modulus and Vf 
and Vm being the volume fractions of fibre and matrix, 
respectively. 

It should be noted that Equation 4, based on the 
analysis of Budiansky et al. [11] has two major  differ- 
ences from an equivalent expression derived by GS [9] 

1. In [9], ~ = V f E f / V m E  m while in our case, ~ = 
VrEr/E ~. The discrepancy is due to the assumption 
in Gopalaratnam and Shah's analysis of constant far 
field strain equal to ( jp/E m. However, the far field 
strain depends on how much stress is transferred from 
the fibre into the matrix and hence should be a 
function ofz. In the present analysis, the far field strain 
is taken to be ( jm/Em, which varies with z according to 
how much stress has been transferred to the matrix. 
The expression for the far field strain is thus based on 
a better physical ground. 

2. In [9], (R*/rf)  is simply obtained from the geo- 
metry of the fibre arrangement. (R*/rf)  in the present 
analysis is obtained from an idealized equivalent cyl- 
inder as described above, which appears to have a 
better physical basis. 

Before debonding occurs, Equation 4 holds for the 
whole fibre. After debonding commences, it still holds 
for the part of fibre which has not yet debonded from 
the matrix. Hence, Equation 4 can be solved to obtain 
(jr in the undebonded part  of the fibre both before and 
after the onset of debonding provided the appropriate 
boundary conditions are employed. The interfacial 
shear stress zf can then be obtained from equilibrium, 
which requires 

~(Jf/~Z -I- ( 2 / r f ) T f  = 0 (5a )  

o r  

T,f = -- ( r f / 2 )~ ( j f /~ z  (5b) 

Expressions for (jr and ~f at the various stages 
(elastic stage, one-way debonding and two-way 
debonding) are given below. It should be noted that 
negligible bond or fibre anchorage is assumed at the 
embedded fibre end. The fibre axial stress is thus 
always zero at the embedded end. 

3.2. Elastic s t a g e  
(Jr = A1 - BI  s inh(pz /r f )  + C 1 cosh(oz /r f )  (6) 

zf = (p /2)B  l cosh(pz/rf)  
- (p/2) C 1 s inh(pz/r f )  (7) 

where 

A t = c~(jp; 

B 1 = (jv[(1 - ~)cosh (pL / r f )  + c~]/sinh(pL/rf); 

C 1 = (jp(1 - ~) 

which have been derived by requiring that of = (jp at 
z = 0 and (jr = 0 at z = L. 

To determine which fibre end will debond first, we 
can look at the shear stresses (Equation 7) at 
z = 0 and z = L, respectively. 

zf(0) = (9/2)(jpr(l - -  0 0cOth(pL/rf) 

+ ~ / s i n h ( o L / q ) ]  (8) 

zf(L) = (0 /2 )%[~co th(oL/ r f )  

+ (1 - ~) /s inh(pL/r f ) ]  (9) 

By comparing Equations 8 and 9, it can be shown that, 
if ~ is less than 0.5, zf(0) will be greater than zf(L). 
Then, debonding will start at the loaded end. If ~ is 
greater than 0.5, ~f(L) will be greater than zf(0) and 
debonding will start at the embedded end. These two 
cases are considered separately below. 

3.3. One-way debonding stage 
3.3. 1. ~ < 0.5 (debonding starts from 

the loaded end) 
Let ll be the length of the debonded zone (Fig. 6a). For  
z < 11, 

~f = ~i (lOa) 

(jr = (~p - -  2"ci(z/rf)  (10b) 

For l I < z < L, the fibre axial stress and interfacial 
shear stress can be obtained from Equation 4 and, 
enforcing the boundary conditions zf = zs at z = 11 
and of = 0 at z = L 

( j f  = A 2 -- B2sinh[p(z - l l)/rf] 

+ C2cosh[p(z  - l l) /rf] (11) 

Tf = (p/2)B2 cosh[fl(z -- ll)/rr] 

-- ( 9 / 2 ) C 2 s i n h [ 9 ( z  - l l) /rf] (12) 

% % % 

t t t 

1 l'I 
(a} (b) (cl 

Figure 6 Three different cases considered in the analysis:  (a) de- 
bonding from the loaded fibre end, (b) debonding  from the embed-  
ded fibre end, and (c) debonding  from both fibre ends. 
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where A2(cz , up), Bz(Zs, p) and C2(Ts,  p, L, 11, rf, cz, Op) 
are given in Equation A7 of Appendix 1. 

From Equations 10 and 11, Op may be expressed in 
terms of 11 (Equation A8 in Appendix 1) by requiring 
the continuity of axial stress at z = 11. 

3.3.2. ~ > 0.5 (debonding starts from the 
embedded end) 

Let 12 be the length of the debonded zone (Fig. 6b). For  
z > 12, 

~f = zi (13a) 

of = 2~i(L - z)/rf  (13b) 

For z < (L - 12),  the fibre axial stress and inter- 
facial shear stress can be obtained from Equation 4 
and, enforcing the boundary conditions "r r = zs at 
z = L - l 2 and of = Op at z = 0 

o f  = A 3 - B 3 s i n h [ p z / r f ]  + C 3 c o s h [ p z / r f ]  (14) 

~f = (p/2)B acosh[pz/rf]  

- ( 9 / 2 ) C a s i n h [ p z / r f ]  (15) 

where A3(~, Op), B3(z~, p, L ,  12, rf, ~, O p )  and Ca(a, Op) 
are given in Equation (A10) of Appendix 1. 

From Equations 13 and 14, Op may be expressed in 
terms of I z (Equation A 11) in Appendix 1) by requiring 
the continuity of axial stress at z = L z. 

3.4. Two-way debonding stage 
After debonding is initiated at one of the fibre ends, 
further debonding is accompanied by continued in- 
crease of shear stress at the other fibre end. Eventually, 
when the shear stress at the other end also reaches the 
interracial shear strength (the conditions given by 
Equations A9 and A12), two-way debonding starts to 
occur. The situation is shown in Fig. 6c. 

In the debonded region near the loaded end 
(0 < z < 1~), the fibre and interfacial stresses are given 
by Equation 10. In the debonded region near the 
embedded end (L - 12 < z < L), the stresses are given 
by Equation 13. 

In the undebonded region, 11 < z < L - 12, the in- 
terfacial shear stress can be obtained from Equation 4 
with the boundary conditions "/2f = T s at z = [1 and 
~f = z s at z -- L - 12. The axial stress can be deter- 
mined by further considering the continuation of axial 
stress at z -- ll. (See Appendix 1 for details.) 

~f = {Ts/[1 -}- e x p ( -  O/3/ r f ) ]}  

{ e x p [ -  p(z - l l ) / r f ]  

+ exp[ - P(ll + 13 - z ) / r f ] }  (16) 

Or = Op - 2z i ( l l / r f )  - (2/p) 

x {z,/[1 + e x p ( -  p l3 / r f ) ] }  

x {1 - e x p [ -  p(z  - l l ) / r f ]  

+ e x p [ -  P(/1 + 13 - z)/rf] 

- e x p ( -  pl3/rf) } (17) 

where 13 = L -- l 1 -- 12 is the length of the remaining 
undebonded zone. 
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In Equations 16 and 17, l~ and 12 can be related to 
G o and 13 (Equations A18 and A19) by noting that the 
fibre and matrix attain the same axial strain at the 
middle of the undebonded zone (i.e. when z = 
11 + 13/2, see Appendix 1). An expression between Op 
and the total debonded length ll + 12 c a n  then be 
obtained (Equation A20). 

It should be noted that if cz = 0.5, debonding will 
start simultaneously at both ends and the analysis for 
two-way debonding in this sub-section holds once 
debonding occurs. Otherwise, two-way debonding will 
always be preceded by debonding from one side of the 
fibre. 

3.5. Derivation of fibre stress-displacement 
(Gp-U) relation 

As discussed in an earlier section, the first-cracking 
strength of composites is governed by the Gp-U rela- 
tion of the fibres. Hence, it is very important to be able 
to predict the op u relation both before and after the 
onset of fibre debonding. 

It should be noticed that u is the displacement at the 
loaded end of the fibre and is not sensitive to debond- 
ing at the embedded end. Before the fibre debonds at 
its loaded end, the relative displacement can be ob- 
tained from Equation A3 as 

U = [Uf -- UR* ] = z f ( O ) [ r f l o g ( e * / r f ) ] / G r n  (18) 

After debonding starts at the loaded end, u can be 
computed from the length of debonded z o n e  l I from 

IA/rf ~- "cs log(R*/r f ) /G m + ( 6 p / E f ) ( l x / r f )  

-- z iEe( lUr f )2 / (E f  rmEm) (19) 

To obtain the Op u relation, it is convenient to use 
the length of the debonded zone as an intermediate 
parameter. The procedure for the computation of the 
Op-U relation is shown in the form of a flow chart in 
Fig. 7. For each point on the op-u curve, a total 
debonded length la is first assumed. Then, depending 
on whether ~ is greater or less than 0.5, one-way 
debonding is assumed to be taking place with Id being 
the length of debonded zone from one or the other 
end. A temporary stress opt is first computed. The 
shear stress at the undebonded end is then checked to 
see if ~s is reached. If zs has not been exceeded, the 
assumption of one-way debonding is correct and Op is 
equal to Opt. u can then be computed using the 
expressions for one-way debonding with 11 or 12 equal 
to l d. On the other hand, if z~ is exceeded on the other 
end as well, two-way debonding is taking place. Then, 
Op is computed f rom/a (=  ll + /2 )  with the expression 
for two-way debonding, ll is then obtained from Op 
and u can be computed once 11 is known. 

After the whole fibre is debonded, it will be pulled 
out at constant interracial friction, ~i. A complete 
schematic Op-U relation is shown in Fig. 8. Theoreti- 
cally, it can be shown that the debonding behaviour 
can be depicted by OAB in the figure. However, 
because the part AB is likely to be unstable in a real 
material system, the stress will drop vertically from 
point A to point C on the pull-out part of the curve. In 
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Figure 7 Flow chart for the computation of qpTU relation with two-way debonding theory. 
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Figure 8 Stress-displacement curve with both the debonding 
branch (OAB) and the pull-out branch (BCD). 

all the figures of the crv-u curves to appear in this 
paper, frictional pull-out after complete debonding 
(BCD in Fig. 8) is not shown. Also, in all subsequent 
figures of the cyp-u relation, the stress is normalized by 
2(L/r)~i, the applied stress when debonding is just 
completed. 

4. Stability of debonding 
Here, stability is discussed with respect to a load 
controlled condition. In other words, once maximum 

stress is reached, unstable debonding is assumed to 
take place. The stability of debonding in pulled-out 
tests has been discussed by Bartos [12]. However, in 
[12], the possibility of two-way debonding is not 
considered. 

According to the different degrees of stable debond- 
ing before final instability, five different types of 
debonding can be identified: I, unstable debonding 
once interfacial strength is reached; II, unstable 
debonding after some stable one-way debonding; 
III, unstable debonding when two-way debonding 
initiates; IV, unstable debonding following stable one- 
way debonding and some stable two-way debonding; 
V, stable debonding until the whole fibre has debon- 
ded. These five types of debonding are illustrated in 
Fig. 9a-e for an artificial composite system with 
Ef = 20 GPa, E m = 10 GPa and Vf = 0.1. In 
Fig. 9a-d, ~s/zi = 2 while in Fig. 9e, z~/'c i = 1. Before 
any debonding occurs, ~v varies linearly with u. The 
points at which one-way and two-way debonding 
initiate are marked as A and B in the figures. As fibre 
length increases, there is a tendency for fibre debon- 
ding to change gradually from Type I to Type IV, It 
should be noted that for Type I to Type IV debonding, 
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the point of maximum displacement (i.e. the instability 
point under displacement control) is different from the 
point of maximum stress. However, the difference is 
usually insignificant except for very small fibre aspect 
ratios. Thus, for fibres of normal aspect ratios, the 
instability point is not sensitive to the type of control. 
Type V debonding is possible only if tl = ts, i.e. the 
interfacial resistance is only due to friction and dy- 
namic friction and static friction are of the same 
magnitude. For  type V debonding, maximum stress is 
reached when debonding of the whole fibre is com- 
pleted. In this case, transition to the pull-out branch is 
stable. 

In this section, physical reasons for the presence of 
various types of debonding will be given. The effect of 
various parameters on debonding type will be dis- 

6002 

Figure 9 Stress-displacement curves for (a) Type I, (b) Type II, 
(c) Type III, (d) Type IV, (e) Type V debonding. (a-d) xjx i = 2.0, 
(e) t~/t i = 1.0. L/r = (a) 1.0, (b) 5.0, (c) 6.1, (d) 10, (e) 10. A, B, points 
at which one-, or two-way debonding starts, respectively. 

cussed. Again, only those mathematical expressions 
pertinent to our discussion are given in the text. 
Details of their derivation can be found in Appendix 2. 

To explain the presence of various types of debond- 
ing, it is instructive to look at the shear stress distribu- 
tion along the fibre for different fibre lengths and at 
different stages (Fig. 10a-g). By equilibrium, the axial 
stress the fibre can carry at its loaded end can be 
obtained from the sum of shear stress at the interface. 
For a short fibre, the shear stress is very uniform along 
the interface during the elastic stage (Fig. 10a) and 
once debonding occurs, the drop of shear stress from 
ts to t i at part of the interface (Fig. 10b) will lead to a 
decrease in axial load carrying capacity of the fibre. 
Under fixed applied load, further debonding will 

occur  unstably and Type I debonding results. 
For  a longer fibre, the shear stress distribution at 

the elastic stage is shown in Fig. 10c and that after 
debonding occurs in Fig. 10d. For  this kind of stress 
distribution, when debonding occurs, the decrease in 
contribution of the elastic shear stress distribution (at 
the undebonded part of the fibre) to axial load- 
carrying capacity can be over-compensated for by the 
contribution of the frictional shear stress at the de- 
bonded zone. Hence, debonding can occur at increas- 
ing applied load. On continued debonding, the shear 
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Figure 10 (a), (b) Shear stress distribution for a short fibre before and after debonding occurs, (c), (d), (e) shear stress distribution for a fibre of 
moderate length before, and just after and well after debonding occurs, and (f), (g) shear stress distribution for a long fibre with large and small 
undebonded zone. 
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debonding. 

stress distribution in the undebonded part  becomes 
more and more uniform (Fig. 10e) and one of the two 
following events can happen. Further debonding may 
lead to a decrease in the load carrying capacity of the 
fibre, in which case a maximum load will occur during 
one-way debonding, or; the shear stress at the embed- 
ded end also reaches z, and two-way debonding starts 
to occur. Expressions for the debonded zone length for 
each of the above events to happen are derived in 
terms of total fibre length in Appendix 2 Equations 
A21 and A23. These expressions are plotted in Fig. 11. 
It  can be observed that for short fibre lengths, the 
debonded zone length for maximum stress to occur 
during one-way debonding is smaller than that when 
two-way debonding starts and hence Type II debond- 
ing will occur. For  longer fibres, two-way debonding 
takes place first and Type III  or type IV debonding 
will result. 

To understand the transition from Type I I I  to Type 
IV debonding, one should consider the shear stress 
distribution during two-way debonding. When the 
undebonded length is small (Fig. 10g), the shear gtress 
distribution is very uniform and further debonding 
will lead to decreasing fibre load-carrying capacity. 
On the other hand, when the undebonded length is 

large (Fig. 10f), the fibre can carry increasing load on 
continued debonding. The explanations are similar to 
those for Type I and Type II  debonding. There must 
be a transition length of total debonded zone (i.e. the 
sum of the lengths of the debonded zones from both 
fibre ends), 01 + /2)max a t  which the decrease in fibre 
load carrying capacity due to decreasing size of un- 
debonded zone is exactly compensated for by the 
increase in frictional contribution due to an increased 
debonded zone. At this total debonded length, a maxi- 
mum load carrying capacity will be reached. An ex- 
pression for (11 + /2)m,x is derived in Appendix 2 and 
plotted as Equation A26 in Fig. 11. If the one-way 
debonded zone length at which two-way debonding 
just starts to occur is already greater than (l~ + 12) . . . .  

the shear stress distribution when two-way debonding 
starts to occur is similar to that shown in Fig. 10g. 
Further debonding will then occur at decreasing stress 
and Type I I I  debonding results. Otherwise, the un- 
debonded zone size is large enough to allow an in- 
crease in applied stress on further debonding and 
Type IV debonding occurs. 

Expressions for the fibre length at which transition 
between various types of debonding occurs are derived 
in Appendix 2 and are given below. Note that all the 
given expressions are for the case cz < 0.5. Corres- 
ponding expressions for ~z > 0.5 can be obtained by 
simply replacing c~ with (1 - c 0 in the given expres- 
sions. 

Transition between Type I and Type II (L = Lc) 

cosh(pLc/rr)  = {r i - -  1) + [ 0 ~ 2 ( z ~ / z l -  1) 2 

+ 4(1 - ~)2zs/zl]~/2}/[2(1 - cz)] (20) 

Transition between Type II and Type III  (L = L tr) 

9Ltr/rf = cosh-l(~s/zi) + [(1 - 2cz)/cz] 

x [ (~s /* i -  1)('cs/~i)]/E(xs/~i) 2 - 1] 1/2 (21) 

Transition between Type I I I  and Type IV (L = L*) 

9L*/rr = [(1 - 200/0~ ] [(%/zi) 2 - (z,/zi)] 1/2 

- l o g { Z ( z J z i )  - 1 - 2[(z,/Ti) 2 - (z~/~i)] 1/~} 
(22) 
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The stability of debonding is affected by 9 L/rf  and 
as well as zs/zi. The combination of these three para- 
meters for each type of debonding can be summarized 
in graphs with fixed zJz~. Examples of such graphs are 
shown in Fig. 12a-c for %/zi = 1.1, 2 and 10. The 
regions for various debonding types are identified in 
the figures. From Fig. 12a-c, the eventual change of 
debonding from Type I to Type IV is favoured by 
increasing the fibre aspect ratio, decreasing Zs/Z~ and 
increasing or decreasing ~ towards 0.5. From the area 
covered by each type of debonding in the figures, it can 
be noticed that Type II and Type IV debonding are 
more common than the other two types of debonding. 
(Note that the apparently large area under Type I 
debonding is due to the use of a log scale for the x-axis 
in Fig. 12.) The figures are symmetrical with respect to 
the line ~ = 0.5. It should be recalled, however, that 
for ~ < 0,5, debonding starts from the loaded end 
while for a > 0.5, debonding starts from the embedded 
end. These figures identify the type of debonding (and 
hence the correct expressions to be used to describe 
debonding behaviour) for fibres of various lengths in 
composites with various fibre volume fractions (~) and 
zJzi and are therefore useful in the design and analysis 
of composites. 

5. C o m p a r i s o n  o f  ~ p - U  r e l a t i o n  p r e d i c t e d  
f r o m  o n e - w a y  d e b o n d i n g  a n d  t w o -  
w a y  d e b o n d i n g  t h e o r i e s  

~p-u relations for various cases are computed with the 
proposed two-way debonding theory and also with a 
one-way debonding theory which neglects the possi- 
bility of debonding from the embedded end (i.e., neg- 
lects the fact that shear stresses at the embedded fibre 
end can exceed the interfacial shear strength). The 
one-way debonding theory used here is thus a sim- 
plified version of  the proposed two-way theory in 
which 12 is always zero and Equation A8 in Appendix 
1 will always be used to compute ~p from the debon- 
ded zone length. In Fig. 13, the two theories are 
compared for different fibre lengths with fixed ~ and 
Zs/Z i. In Fig. 14, comparison is made between cases 
with fixed length and Zs/Zi but with varying ~ (through 
the variation of l/f). In Fig. 15, results are compared 
for various values of zs/zi with ~ and Vf fixed. 

It is obvious from Figs 13-15 that the one-way 
debonding theory can be a good approximation only 
when the fibre embedded length is small, the volume 
fraction is low or when the interracial chemical bond 
strength is much higher than the interfacial friction. As 
mentioned before, the unstable branch of the ~p-U 
relation cannot be attained in reality. Also, the pull- 
out part of the Cyp--U relation (where the stress drop at 
instability will reach) is very fiat compared with the 
debonding part. Hence, the difference in the unstable 
part of the ap-U relation is not expected to signific- 
antly affect the overall debonding behaviour. Because 
the instability point is very close to the point of 
maximum stress (though usually at a higher value of 
u), one can conclude that if the maximum stress occurs 
before any two-way debonding takes place, i.e. de- 
bonding is of Type I or Type II, one-way debonding 
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Figure 12 Regions for various types ofdebonding for zs/z i = (a) 1.1, 
(b) 2.0, (c) 10. 

theory can be used as a good approximation. There- 
fore, Ltr/rf, the transition aspect ratio between Type II 
and Type Ill debonding given by Equation 22 can also 
be used as the transition aspect ratio beyond which 
two-way debonding has to be considered. It should 
also be pointed out that if Type III or Type IV 
debonding takes place, the use of traditional one-way 
debonding theories will always overestimate the maxi- 
mum stress on the ~p-u curve. This may be expected 
since the neglecting of debonding from the embedded 
end leads to overestimation of the stress carried by the 
undebonded part of the interface. The effect of this 
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overestimation on composite behaviour is discussed in 
detail in a companion paper [22]. 

An important point to be noted is that when 
> 0.5, debonding, starts from the embedded fibre 

end. Traditional debonding theories which only con- 
sider debonding from the loaded end are obviously 
inapplicable. In general, the new two-way debonding 
theory has to be employed. For very large values of ~, 
a new one-way debonding theory that considers only 
debonding from the embedded end may be used. 

Traditional one-way debonding theories, on the other 
hand, are only applicable to cases with small ~. 

6. Strength-based and f racture-based 
debonding theories 

The two-way debonding theory developed here, as 
well as the other one-way debonding theories de- 
scribed above, are commonly referred to as strength- 
based theories, since interfacial debonding is assumed 
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to occur once an interfacial strength is reached. In the 
literature, fracture-based theories have also been pro- 
posed [-13-17]. In such theories, the debonded inter- 
facial zone is regarded as a tunnel crack which grows 
in size once an interfacial toughness is overcome at the 
crack tip. In this section, conditions for the validity of 
these two different approaches will be discussed with 
respect to different possible stress distributions along 
the interface. 

In our analysis, it has been assumed that there is a 
sharp boundary between the debonded and unde- 
bonded regions of the interface. However, in reality, 
between the elastic undebonded zone and the fric- 

tional debonded zone, there may exist a transition 
zone (see Fig. 16) where breakdown of material takes 
place. If the transition zone is large (in comparison to 
fibre length), there is a smooth transition of interracial 
stress from the undebonded zone to the debonded 
zone. On the other hand, if the transition zone is very 
small, there is an abrupt change between the two 
zones and a singular stress field will be present. In 
general, for large and small transition zone sizes and 
large and small ~s/Zl (note that here, z s is the interfacial 
strength while zi is the interfacial friction), four differ- 
ent cases can be distinguished. The various cases 
(I-IV) are shown schematically in Fig. 16. Cases I and 
II are for small z~/zi. For case I, where the transition 
zone is large, there is no singularity in the stress field 
and a strength-based approach is appropriate. Be- 
cause the difference between interracial strength and 
interfacial friction is not significant, a single parameter 
zi can be used to characterize both the transition zone 
and the frictional zone. For Case II, where the transi- 
tion zone is small, a stress singularity exists and a 
fracture-based approach should be more appropriate. 
However, if the interfacial toughness (usually denoted 
by a critical interfacial energy release rate Go) is low, 
once the debonded zone has extended beyond several 
fibre diameters, the contribution of frictional shear 
stress becomes significant compared with the contri- 
bution of elastic stresses in the undebonded zone. If 
one is interested in global composite behaviour (such 
as the C~p-U relation) which is insensitive to the in- 
accuracy of stresses at local points, the use of a 
strength-based theory with an approximate stress field 
(such as one obtained from the shear lag analysis) may 
provide a good approximation. However, if the inter- 
facial toughness is high, debonding is always domi- 
nated by the singular stress field and a fracture-based 
approach has to be used. Cases III and IV are for large 
zs/zi.  For Case III, where there is a large transition 
zone, the change of stress with slip in the transition 
zone (or the slip-weakening relation) can significantly 
affect interfacial behaviour. In this case, to study the 
debonding behaviour, linear elastic fracture mech- 
anics will not be applicable because of the invalidity of 
the small-scale yielding requirement. However, ap- 
proaches similar to Barenblatt's [18] or Hillerborg's 
[19] for mode I "cohesive cracking" or Li's [20] for 
Mode II shear rupture, with the cohesive stresses 
given by the slip-weakening relation, can be employed. 
For Case IV, where the transition zone is small, 
debonding behaviour is governed by the singular 
stress field and a fracture-based theory based on a 
single fracture parameter (such as the critical energy 
release rate) is appropriate. In general, a singularity 
may be maintained even when the transition zone is 
large such as in coarse grain alumina or certain fibre 
reinforced ceramics. For  this case, a nonlinear fracture 
analysis similar to that for Case III but which can 
consider both the crack tip singularity and the slip- 
weakening in the crack wake has to be carried out for 
the interfacial crack. 

Experimental observations in support of the above 
arguments are available. For  a silicon carbide- 
reinforced lithium alumino-silicate system where there 
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is negligible chemical bonding between the fibre and 
matrix (i.e. zs/zi = 1), Marshall and Oliver [21] have 
shown that a frictional sliding analysis (which is equiv- 
alefit to a strength-based analysis with the effect of 
elastic shear stress transfer neglected) gives good 
agreement with experimental measurement of the ap- 
plied load versus fibre displacement curve. This obser- 
vation is in agreement with the above discussions 
which suggest that the strength-based approach is 
valid for low ~s/zi (Case T or II). On the other hand, 
Piggott [15] shows that for a glass reinforced poly- 
ester resin system where rl is greatly reduced by 
Poisson's contraction of fibre near the loaded end (i.e. 
v~/~i >> 1), a strength-based analysis cannot provide a 
good fit to experimental data of maximum load 
against fibre length while a fracture-based theory with 
a single fracture parameter is able to explain the trend 
of experimental data. This composite system is thus a 
plausible example of Case IV. 

While fracture-based theories are more appropriate 
for some composite systems, a fracture-based theory 
which can accurately describe the debonding of fibres 
has yet to be developed. Owing to the difficulties in 
obtaining the actual stress field at the interface, all 
current fracture-based theories rely on an energy ap- 
proach in which the energy release rate of the com- 
posite during debonding is usually obtained from an 
approximate stress field. (Note that as a global para- 
meter, the energy release rate is again insensitive to 
inaccuracy of stress at local points.) All available 
fracture-based theories are for cases with a negligible 
transition zone, where a single fracture parameter is 
enough to characterize interfacial crack growth. In 
most existing fracture-based theories [13-15], the 
effect of friction on debonding was completely neg- 
lected. In Morrison et al. [16], the energy release rate 

was derived first for a frictionless interface ('E i = 0) .  

The load carried by interfacial friction and the load 
required to debond a frictionless interface are then 
added to obtain the total load. When the debonded 
zone increases in size, the energy release is related to 
the resulting change in stress distribution and is thus 
affected by the friction at the fibre matrix interface. 
Neglecting the effect of interfacial friction on energy 
release in [163 and hence decoupling the fracture and 
friction problems appears unacceptable on theoretical 
grounds. Gao et al. [17] proposed an approach which 
included the effect on interfacial friction in the calcu- 
lation of energy release rate. However, in [173, the 
energy release rate is obtained from the fibre com- 
pliance at its loaded end. While this approach is 
applicable to one-way debonding, where there is only 
one propagating crack at the interface, direct modi- 
fication to the case of two-way debonding (with two 
interacting cracks propagating in opposite directions) 
is by no means straightforward. To be able to predict 
two-way debonding behaviour with an energy-based 
theory, further research is necessary to develop a novel 
approach to obtain the energy release rate for inter- 
active interfacial cracks. 

It should be pointed out that in both [163 and [173, 
one-way debonding is assumed to continue until the 
embedded end is reached when the load will suddenly 
drop to the frictional load-carrying capacity of the 
interface. This assumption is only valid if the end of 
the fibre is bonded to the matrix and the bond stress is 
just equal to the stress drop from maximum stress to 
the post-peak pull-out branch. This is not realistic in 
general, for several reasons. In some systems, there is 
no significant chemical reaction between the fibre and 
matrix and bonding at the end is negligible. In other 
systems, where there is chemical bond, the bonding 
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may not be strong enough to take significant load 
because the area of the fibre end is usually very small. 
Moreover, as shown experimentally in [7] and theor- 
etically in [17], the stress drop varies with fibre em- 
bedded length. Hence, the above assumption requires 
a variation of end bond strength with embedded 
length. 

In summary, the strength-based theory is only good 
for cases where ~s/~i is small. For  more general cases, 
more accurate two-way debonding analyses based on 
the interfacial fracture toughness and/or the slip- 
weakening relation have to be carried out. However, 
for the time being, with no better debonding theories 
available, the present strength-based theory may be 
used as a reasonable approximation for more general 
cases. 

7. Conclusion 
In this paper, a new theory for the debonding of fibres 
in a composite is proposed. While traditional theories 
are only applicable to composites with low volume 
fraction, low fibre length and/or  high interracial shear 
strength/friction ratio, the new theory is applicable to 
more general cases. Because the cracking strength of 
composites is strongly affected by the debonding be- 
haviour of fibres, a debonding theory of general ap- 
plicability will be very useful in the design and analysis 
of composites. The applications of this new theory to 
the interpretation of pull-out test results and the 
derivation of C~p-U relations for practical composite 
systems will be considered in a companion paper 1-22]. 

Appendix 1. Derivation and solution of 
Equation 4 for one-way and 
two-way  debonding 

In this appendix, a differential equation for the fibre 
axial stress will be derived for the idealized model 
described in the text, in which the matrix from rf to R* 
carries only shear stress (Fig. 5b). The axial stress and 
strain in the matrix are assumed to be carried by a 
cylindrical ring of matrix material located at r = R*. 
The differential equation can then be solved with 
appropriate boundary conditions to obtain the stress 
distribution in the undebonded part of the fibre for the 
elastic stage, the one-way debonding stage as well as 
the two-way debonding stage. 

With the coordinate axes defined as in Fig. 5b, in 
the matrix, from rf to R*, 

~'cr=/~r + "C~z/r = 0 (A1) 

"Cr~ = G,, Ow/~r (A2) 

where Gm is the shear modulus of the matrix and w is 
the displacement in the z direction. Putting w = UR, at 
r = R*, w = uf at r = rf and integrating from rf to R*, 
we have 

Tf = "Crz [ . . . .  = Gm(UR*-uf ) / [rr log(R*/r f )  ] (A3) 

Equilibrium of fibre stress and interfacial shear stress 
requires 

~(Tf/~Z "~- (2 / r f ) '~ f  • 0 (A4) 

Global equilibrium requires 

g f o ' f  --[- gmO" m = g f o ' p  (AN) 

where crf and (3 m are the fibre and matrix stresses 
respectively and Cyp is the applied stress at the loaded 
end of the fibre. 

Also, from strain-displacement relations, 

~Uf/~Z = ~f /Ef;  ~UR*/~Z : fire~Era (A6) 

Equation 4, which is the governing differential 
equation for the derivation of C~p, can then be obtained 
by combining Equations A3, A4, A5 and A6. 

A1.1. Solution for one-way debonding 
A1.1.1. oe < 0.5 (debonding starts from the 

loaded end, Fig. 6a) 
The expressions for fibre axial stress and interfacial 
shear stress are given in the text as Equations 11 and 
12. The constants A2, B 2 and C2 in the equations are 
given by 

A 2 = ~Crp 

B2 = 2(~/9) (A7) 

C2 = {2(zJg)  s inh[9(L  - l l) /rf] 

- -  ~ O ' p } / c o s h  [ - p ( L  - 11 ) / r f ]  

Using Equations 10 and 11, the continuity of stress 
at z = 11 provides a relation between l~ and Cyp. 

Crp = [2(I1/r f )~icoshX 1 + 2(~s /p)s inhX1]  / 

[(1 -- ~)coshX1 + ~] (A8) 

where X 1 = p(L - ll)/rr 
The applied stress at which debonding starts at the 

embedded end can be obtained by putting zf(L) = r~ 
in Equation 12 and is given by 

(~O'p : 2(~Jp){cosh[p(L - l l) /rf]  

- 1 } / s i n h [ 9 ( L -  l l ) /r f]  (A9) 

A1.1.2. ~ > 0.5 (debonding starts from the 
embedded end, Fig. 6b) 

Equations 14 and 15 in the text give the fibre stress 
and interfacial shear, respectively. The constants A3, 
B 3 and C 3 in the equations are given by 

A 3 = 0tO'p 

B3 = {2(x~/p) + (1 -- ~)Opsinh[p(L - 12)/rf]}/ 

cosh[-p(L - 12)/rf] (A10) 

C 3 = (1 - -  ~ ) O p  

Using Equations 13 and 14 as well as the continuity 
of stress at z = 12, C~p can be expressed in terms of 12 as 

Cyp = [2(12/rf)~icoshX 2 + 2(~s /p)s inhX2]  / 

[~coshX 2 + (1 - ~)] (All)  

where X 2 = p(L - 12)~re 
The applied stress at which debonding starts at the 

loaded end can be obtained by putting zf(0) = zs in 
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Equat ion 15 and is given by 

(1 - c0cyp = 2 (~Jp){cosh[p (L  - 12)/rf] 

- 1}/s inh[p(L - 12)/re] (A12) 

A 1.1.3. Two- way debonding (Fig. 6c) 
At this stage, Equat ion  4 governs the fibre stress in the 
zone 11 < z < L - 12, with the b o u n d a r y  conditions 

~f = ~ ,  z = 11 (A13a) 

rf = ~ ,  z = L - 12 (A13b) 

By decomposing Equat ions  A13a and b into two sets 
of boundary  condit ions with l 3 = L - 11 - 12  

zf = r~/[ t  + e x p ( -  p l3 / r f ) ]  z = ll (A13c) 

"c r = v ~ e x p ( -  pl3/r f ) / [1  + e x p ( -  p l J r f ) ]  

z = L - 12( = l, + 13) (A13d) 

and 

tion A5, we have 

(~f = ~gp  (A17) 

I~ is then obtained by substituting o-f = 0~O'p and 
Z = 11 q- 13/2 into Equat ion  A15. 
2z i ( l l / r f )  = (1 - a) (~p - (2/p) z~[1 - e x p ( -  pl3 /r f ) ] /  

[1 + exp( - p!3/rr)] (A18) 

Similarly, it can be shown that 12 is given by 

2%(t2/rf)  = <z~p - (2/p)~s[1 - e x p ( -  pl3/rr)] / 

[1 - e x p ( -  pl3/rf)  ] ( a l9 )  

By adding Equat ions  A18 and A19 together, the 
applied stress Cyp can be expressed in terms of  the total 
debonded zone length (11 + 12) a s  

~p = 2~i(11 + 12)/rf + (4/p)~ 

x { 1 -  e x p [ - -  p(L - 11 - 12)~re]}~ 

x{1 + exp[  - p ( L  --  l, - 12)~re] } (a20) 

z r = % e x p ( -  pl3/r f ) / [1  + e x p ( -  pl3/rr) ] 

z = 11 (A13e) 

�9 f = G/J1 + e x p ( -  pl3/rf)] 

z = L - -  12( = l l  -I- / 3 )  (A13f) 

it can be easily shown that  a shear stress distribution 
satisfying the required boundary  conditions and 
which can give rise to a distribution of ~f ( through 
integration) that satisfies Equat ion  4 is given by 

zf = {Zs/[1 + e x p ( -  913/rf)]}  

{ e x p [ -  p(z - I t ) /r f]  

+ e x p [ -  9(l l  + 13 - z ) / r f ] }  (A14) 

At z = 11, cyf = Cyp - 2zi ( l l / r f ) .  In the undebonded 
r e g i o n ,  l 1 < z < 12, the fibre stress can be derived by 
integrating Equat ion  A14 (recall ~ f / ~ z  = - (2/rf)zf) 
to give 

cy r = Cyp -- 2r, i ( l l /r f )  --  (2/p) 

x {z~/[1 + e x p ( -  913/rr)]} 

x {1 -- e x p [ - -  p(z --  l l ) / r f ]  

+ e x p [ - -  9(11 + 13 -- z) /rf]  

-- e x p ( -  pl3/re) } (a15) 

The relation between Cyp and I~ can be obtained by 
noticing that the interfacial shear stress is a min imum 
as the fibre and matrix attain the same strain. (Note 
that  from Equat ion  A3, zf is directly propor t ional  to 
U e -  uR*. When the fibre and matrix have the same 
strain, d u f / d z  = d u R , / d z  and hence d~f/dz = 0, impl- 
ying a min imum value for "of). Due  to symmetry  of the 
shear stress distribution within the undebonded  re- 
gion, the point  of min imum shear stress is half way 
into the zone, i.e. at a distance z = l I -k- 13/2. 

When the fibre and matrix are at the same strain, 

1 5 f / E f  ----- ( ~ m / E m  (A16) 

Together  with the global equilibrium condit ion Equa-  

Appendix 2. Derivation of transition 
fibre lengths for different 
types of debonding 

In this appendix, the values of L/r f  for transit ion 
between the various types of  debonding are derived. 
Expressions are derived for the case cz < 0.5. Corres- 
ponding  expressions for the case cz > 0.5 can be ob- 
tained by simply replacing ~ in the expressions for 
cz < 0.5 with (1 - ~). 

The max imum stress during one-way debonding 
occurs when ~Crp/3(ll/r 0 = 0, i.e. 

p l l / r  f = [-(1 - -  ( x ) ( T i c o s h 2 X l  - ' rs) -t- (~('17 i - Zs) 

x coshX 1 ]/(czr i s inhX1) (A21) 

using Equat ion  A8 for cyp. Here, X 1 = p(L - l l ) / r  f. 
Unstable debonding will occur once the interracial 

strength is reached if the maximum stress occurs at 
l 1 = 0. Let L c be the value of L in Equat ion  A21 when 
11 = 0. On  solving, we have 

c o s h ( p L J r f )  = {(Z(12S/12 i - -  1) + ] - ~ 2 ( q j s / T  i - -  1) 2 

+ 4(1 -- at)azs/z i] t /2}/[2(1 -- ~)] (A22) 

The shorter the fibre, the more  likely that unstable 
debonding occurs (see discussion in text). Therefore, 
for any fibre length shorter than or  equal to Lc, Type I 
debonding (i.e., completely unstable debonding) will 
occur. 

For  L > Lc, there will be some stable debonding 
before final instability is reached. Type II debonding 
will take place if a maximum stress is reached before 
two-way debonding starts. The length of debonded 
zone l't when two-way debonding starts to occur is 
given by elimination of c~p in Equat ions A8 and A9. 

pl' l /r  f = ('~s/'q)[(1 - 2r ] 

x [ ( c o s h X i  - 1)/s inhXl]  (A23) 

where X ]  = p(L - l ' l)/rf.  
The values of 11 and l] satisfying Equat ions A21 and 

A23, respectively, can be obtained numerically for 
given cx and xs/~ i. This is done for e~ = 0.1818 and 
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z J z i  = 2. The  resul ts  are  s h o w n  in  Fig. 11 in  the text 

wi th  the d e b o n d e d  leng th  p lo t t ed  as a f unc t i on  of the 
to ta l  e m b e d d e d  fibre l eng th  L. I t  is s h o w n  tha t  for 
smal l  L (small  b u t  still greater  t h a n  L~), E q u a t i o n  A21 

is satisfied before E q u a t i o n  A23 a n d  Type  II  d e b o n -  
d ing  will occur.  The  t r a n s i t i o n  fibre l eng th  L tr at  which  
11 = I'1 = It r can  be o b t a i n e d  by  so lv ing  E q u a t i o n s  
A21 a n d  A23 s imu l t aneous ly ,  g iv ing  

p ( L  'r --  l]r)/rf = cosh- l (Zs / ' q )  (A24) 

p L t V r r  = cosh- l (z~ /z i )  + [(1 - 2~)/0~] 

x [(z~/r i - 1)(Zs/Zi)]/[(zJzi) 2 - 1] 1/2 (A25) 

Also in  Fig. 11 is a s t ra ight  l ine s h o w i n g  the  va lue  of  

(11 + I2)max at  which  m a x i m u m  stress occurs  d u r i n g  
two-way  d e b o n d i n g  for c o r r e s p o n d i n g  va lues  of L. 

E q u a t i o n  A20 expresses Crp in  te rms  of (l 1 + 12)- By 
di f ferent ia t ing  E q u a t i o n  A20 wi th  respect  to (l 1 + / 2 )  

a n d  se t t ing the resul t  to be  zero, (11 + /2)max can  be 
o b t a i n e d  after some  a lgebra ic  m a n i p u l a t i o n s  to be  

(ll + 12)max = L + ( r f / p ) l o g  { 2 ( z J z i )  - 1 - 2 

x [ (zJz i )  / - (Zs/Zi)] 1/2} (A26) 

N o t e  tha t  the second  t e rm in  the r i g h t - h a n d  side of 

E q u a t i o n  A26 is a lways  less t h a n  or  equa l  to zero, so 

(ll + /2)max is always less t h a n  L. 
T o  f ind the t r a n s i t i o n  be tween  T y p e  I I I  a n d  

T y p e  IV d e b o n d i n g ,  E q u a t i o n s  A23 a n d  (A26) have  
to be solved s i m u l t a n e o u s l y  (see Fig. 11), t ak ing  

l'l -- (ll + 12)max. Then ,  f rom E q u a t i o n  A26 

X'~ = p ( L  - / ' l)/rf = ( p / r O l L  - (l~ + 12)max] 

- log{2(zdzi)- 1 - -2 [ (Zs /Z i )  2 - -  (Ts/~'i) ']  1/2 } 

(A27) 

Hence ,  

c o s h X '  1 = 2 ( z J z i ) -  1 (A28) 

s i n h X ' l  = 2[('Cs/'Ci) 2 - ('r,s/SJi)]l/Z (A29) 

Subs t i t u t i ng  in to  E q u a t i o n  A23, we have  

p I'ltrf = [(1 - 2~)1~] E(zs/zi) 2 - (z~lzi)] 1/2 (A30) 

The  t r a n s i t i o n  aspect  ra t io  L * / r f  is t hen  g iven by  

subs t i t u t i ng  E q u a t i o n  A30 in to  A27 

p L*/rf = [ ( 1  - 2 a ) / a ]  [(zs/zi) z - (27s/'gi)3 1/2 

- t o g { 2 ( z J z i )  - -  1 - 2[(zJzi)  2 - ('[s/Zi)] 1/2 } 
( A 3 1 )  
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